Levels 4, 5 and 6

MODULE 1:
Why Road Safety Matters

Activities

- What’s the problem?
- The physics of road crashes

Links to AusVELS

<table>
<thead>
<tr>
<th>Level</th>
<th>Information and Communications Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICT for creating</td>
</tr>
<tr>
<td></td>
<td>ICT for communicating</td>
</tr>
<tr>
<td>Level 4</td>
<td>Health and Physical Education</td>
</tr>
<tr>
<td></td>
<td>Health knowledge and promotion</td>
</tr>
<tr>
<td>Science</td>
<td>Science Understanding: Physical sciences (ACSSU076)</td>
</tr>
<tr>
<td></td>
<td>Science Inquiry Skills: Planning and conducting (ACSIS065) (ACSIS066)</td>
</tr>
<tr>
<td></td>
<td>Processing and analysing data and information (ACSIS068) (ACSIS216)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Measurement & Geometry: Using units of measurement (ACMMG084)</td>
</tr>
<tr>
<td></td>
<td>Data representation and interpretation (ACMSP096)</td>
</tr>
<tr>
<td>Thinking Processes</td>
<td>Reasoning, processing and enquiry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 5</th>
<th>Information and Communications Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICT for creating</td>
</tr>
<tr>
<td></td>
<td>ICT for communicating</td>
</tr>
<tr>
<td>Level 5</td>
<td>Health and Physical Education</td>
</tr>
<tr>
<td></td>
<td>Health knowledge and promotion</td>
</tr>
<tr>
<td>Science</td>
<td>Science Inquiry Skills: Planning and conducting (ACSIS086) (ACSIS087) (ACSIS088)</td>
</tr>
<tr>
<td></td>
<td>Processing and analysing data and information (ACSIS090) (ACSIS218)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Measurement & Geometry: Using units of measurement (ACMMG108)</td>
</tr>
<tr>
<td></td>
<td>Data representation and interpretation (ACMSP118) (ACMSP119) (ACMSP120)</td>
</tr>
<tr>
<td>Thinking Processes</td>
<td>Reasoning, processing and enquiry</td>
</tr>
</tbody>
</table>
MODULE 1: Why Road Safety Matters

<table>
<thead>
<tr>
<th>Level 6</th>
<th>Information and Communications Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICT for creating</td>
</tr>
<tr>
<td></td>
<td>ICT for communicating</td>
</tr>
<tr>
<td>Health and Physical Education</td>
<td>Health knowledge and promotion</td>
</tr>
<tr>
<td>Science</td>
<td>Science Inquiry Skills: Planning and conducting (ACIS103) (ACIS104) (ACIS105)</td>
</tr>
<tr>
<td></td>
<td>Processing and analysing data and information (ACIS107) (ACIS221)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Measurement & Geometry: Data representation and interpretation (ACMSP147)</td>
</tr>
<tr>
<td>Thinking Processes</td>
<td>Reasoning, processing and enquiry</td>
</tr>
</tbody>
</table>

Key ideas

- Road trauma is a major global public health problem.
- Most journeys are made safely, but all travel can be risky.
- When travelling, people make choices about safety.
- When a crash occurs, the speed at which vehicles travel will influence the severity of the trauma.
- Most crashes are avoidable.
- The choices people make and the behaviours they adopt contribute to road trauma.

Students will be able to:

- Understand that road trauma is a major public health issue.
- Identify the factors that contribute to road trauma.
- Identify the contribution that human error makes to road crashes.
- Describe in simple terms the physics of a road crash.
- Strengthen their decision-making, communication and negotiation skills to optimise their safety when travelling.

Vocabulary

- Accident
- Crash
- Road trauma
- Injury
- Fatality
- Factors
- Travel mode
- Force
- Friction
- Speed
- Stopping distance
- Acceleration
- Deceleration
ACTIVITY: What’s the problem?

IN THE CLASSROOM

Preparation

• Students will need to have access to the Internet and slideshow presentation software to enable them to report the information they collect.

Investigate the road trauma problem using the Internet.

In small groups or pairs, direct students to undertake an online search to determine the extent to which road safety is a major public health problem.

Direct the class to find information about the size and cost of the road trauma problem in Victoria and in Australia. Good sources of information are:

• Road Safety Victoria (www.roadsafety.vic.gov.au)
• Transport Accident Commission (TAC) (www.tac.vic.gov.au)
• VicRoads (www.vicroads.vic.gov.au)
• Australian Department of Infrastructure and Regional Development (www.infrastructure.gov.au)

Groups could investigate the road trauma problem from a number of perspectives – such as the numbers killed, seriously injured or injured; gender and age of crash victims; type of road users mostly involved; time, day, and month when crashes mostly occur; and/or a comparison with other public health issues. The investigation could also direct students to make an international comparison. Good sources of international information are:

• World Health Organisation (www.who.int/violence_injury_prevention/road_traffic/en/)
• Global Road Safety Partnership (www.grsroadssafety.org)
• United Nations Decade of Action for Road Safety Fund (www.roadsafetyfund.org)

Report and present information about road trauma.

Groups should develop a slideshow presentation on their findings and report back to the class. Their report needs to include graphs and graphics and suggestions for getting this information out to other people who need to know about this situation.

To debrief the activity, ask and discuss with students how the information could apply to them and their travel.
Build an understanding of contributing factors to road crashes.

Tell students that when road crashes are investigated, it is usually found that whilst a single factor may contribute to a crash occurring, in the majority of cases it is the combination of a number of factors that causes a crash. It is suggested that about 95 per cent of motor vehicle crashes have human factors alone or in combination with one or more other factors as major contributors.

Ask and discuss:
- What do we mean by ‘factor’? (contributing cause)
- What are the factors that contribute to a road crash?
 - **Human factors** – the behaviour of the people involved – such as distraction (mobile phones, music, friends); tiredness (resulting in poor concentration); illness; lateness (resulting in speeding); disregard for road rules; choosing the unsafe option (such as crossing between moving vehicles)
 - **Vehicle factors** – features of the vehicle involved – such as poorly maintained vehicle; lack of modern safety features (such as ABS brakes)
 - **Environmental factors** – features of the road and surrounding area – such as the surface and condition of the road and roadside; poor visibility as a result of heavy rain or bright sunshine; wet roads needing people to travel slower so they have more time to come to a stop.
- Which of these factors can we do something about to reduce road trauma?

In small groups have students adopt the roles of crash investigators to analyse contributing factors in a crash.

Discuss the circumstances of a typical crash or use the crash scenario below:

Jason was riding his bicycle down to the local swimming pool with some of his friends. He wasn’t wearing a helmet and knew that his front brake wasn’t working as well as it could, but he had kept forgetting to get it fixed. To get to the pool they could either ride along quiet back streets or take a short cut and ride through the busy Main Street shopping centre. They took the shortcut and rode along Main Street. Jason had been left behind by his friends and was pedalling hard to catch up when a car suddenly pulled out from a parking spot in front of him. He tried to brake, but couldn’t stop in time. He crashed into the car and was thrown heavily onto the road. He received head injuries, a broken arm and cuts.

The investigators are to take into account the factors discussed earlier (human, vehicle and environment). Not every crash has all three categories of contributing factors, but almost always, human factors are dominant. Ask them to consider:
- What happened?
- Why?
- What effect/impact might the crash have on the victim(s), person at fault, family, observer(s) and others who knew the killed, seriously injured or injured of the crash?
- What could be done differently so that a similar crash doesn’t occur again in the future?
To help organise their thinking and investigation, have students use the following matrix.

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Vehicle</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the crash what occurred?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the crash what happened?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After the crash what could be done differently?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After completing the investigation, students should write a report about the crash and make recommendations to avoid a similar event in the future.

Further investigate human factors in road crashes.
To reinforce the contribution that human factors make to road crashes, divide the class into ‘human factor groups’. Have them investigate the contribution people’s decisions make to road crashes in general. The groups could be: mobile phones, alcohol, drugs, fatigue, speeding, distractions (such as passengers).

Students should investigate why this is a problem or issue and find out what is already being done by road safety agencies to address this. The following websites will prove useful:

They should also suggest their own ideas for solutions or strategies that could be implemented by individuals or the general community to address it.

Have each group report their findings back to the rest of the class and discuss.
ACTIVITY: The physics of road crashes

IN THE CLASSROOM

Preparation

- Ask students to bring an open top convertible toy car and some small toy people, who can fit into the car, from home for this activity.
- Obtain a few stiff pieces of cardboard, about 50cm long, for ramps, and something that can act as a base for the ramp (to raise ramp about 10cm). You’ll also need some blocks of wood, sticky tape and rulers. See Module 1 – Classroom Activity 1: Forces and people in a crash for details.
- Make copies of Module 1 – Classroom Activity 1: Forces and people in a crash and Module 1 – Classroom Activity 2: Perfect timing for the class.

Investigate the forces involved in road crashes.

Commence this activity by asking students to recall the factors that contribute to road crashes that were identified in a previous activity, What’s the problem? (human, vehicle and environmental factors).

The outcome of a crash (that is, the severity of injury or damage) depends on the forces generated at the moment of contact:

- The faster a vehicle travels, the less time it has to stop
- The faster two objects collide, the more force will be generated
- The more force that is generated, the more damage is done to the human body and other objects in the collision.

 Forces are in operation all around us. They operate in pairs and if the forces are balanced, the object will either remain at rest, or continue moving at a steady speed in a straight line. If one force is greater than the other, the object will either speed up, slow down or change direction. The greater the force, the greater the damage. Explain to students that many forces come into play in a crash, but it is possible to reduce this force.

Distribute Module 1 – Classroom Activity 1: Forces and people in a crash and use a toy car to explain and demonstrate to the class the concept of force. Have small groups of students conduct the experiments.

Debrief this activity by inviting students to make suggestions about how forces could be reduced in the event of a crash.
Investigate how friction influences stopping distances.
Friction is the force generated between two surfaces when they rub or move over each other. Controlling any vehicle manoeuvre such as braking, accelerating and cornering relies on frictional force between tyres and road surface. On most dry surfaces friction is high, no matter what the road surface. However, when the road is wet or icy, there is less of the two surfaces in contact with each other and, especially if the vehicle is travelling at high speed, there is less opportunity for the surfaces to be in contact with each other. The take-out message for students is that they need to understand that sometimes vehicles/bicycles take a long time to stop.

In small groups, have students design and conduct an experiment that clearly establishes the principles of friction and its relationship to stopping within a required distance or time. They could use remote controlled cars, bicycles, skateboards, roller blades or different soled shoes as the basic equipment and conduct experiments using a range of surfaces to determine how friction influences stopping distances – such as a dry concrete surface compared with when it is wet. This experiment could be undertaken in conjunction with the earlier experiment on force.

The following questions need to be explored:

- What is friction?
- Under what conditions was the most friction found?
- Under what conditions was the least friction found?
- What modifications could be made to increase friction?
- How does the concept of friction apply to ‘on road’ situations for a driver, pedestrian or cyclist?
- What are the implications for safer travel? How can this information help keep you safer when crossing a road?

Introduce the contribution speed makes to road crashes.
Discuss with the class what comes to mind when they hear the word ‘speed.’ Speeding is a common factor in most crashes – even for vehicles that are travelling just over the posted speed limit. The faster a vehicle travels, the less time there is for the driver or rider to react to an unexpected event. The faster the vehicle is travelling, the harder it will hit an object. The harder an object is hit, the more damage there will be sustained.

Ask:

- What does the word SPEED mean to you?
- What is the difference between SPEED and SPEEDING?
- What is a fast speed? When is fast too fast? Can too fast still be legal?
- What is a slow speed? When is slow too slow?
- Why do we have road laws which control the speed of vehicles?

Remind students about the earlier work done on the contribution human factors, particularly speed, make to road crashes.

Make links between the concept of speed and its relationship to stopping distance.
Distribute copies of Module 1 - Classroom Activity 2: Perfect timing.

Discuss:
• What could we mean by the term ‘stopping distance’? (Total distance that a vehicle travels to come to a complete stop from the time the driver first decides to stop, including the reaction distance and the braking distance.)
• What could we mean by ‘reaction distance’? (The distance that a vehicle continues to travel while the driver thinks about and processes the information required to stop the vehicle.)
• What could we mean by ‘braking distance’? (The distance a vehicle continues to travel once the brakes are applied.)
• Why are the reaction distances and the braking distances different for each speed example?
• What happens to the distances as speed increases?
• Why do you think this happens?
• What would you expect to happen to the stopping distances if it was raining, foggy or night time? (Relate this back to the experiments with force and friction.)
• What would happen to stopping distances if the tyres were in poor condition?
• Would there be any difference in the stopping distance of a small vehicle and a fully loaded truck or bus?

Using the worksheet, have students work out the total stopping distance for each speed and enter it on the chart.

EXPLORING THE LOCAL AREA

Preparation

- You will need a long tape measure and chalk for measuring out and marking stopping distances from *Module 1 - Classroom Activity 2: Perfect timing*.

Explore stopping distances.

Take students out into the school ground to measure the different stopping distances from *Module 1 - Classroom Activity 2: Perfect timing* using the same starting point. Divide the class into groups, one group for each speed. Have students stand at the starting and stopping lines and rotate groups to view each length.

Discuss:

- Can we always expect a vehicle to stop in time to avoid a crash?
- What can pedestrians and cyclists do to assist drivers to stop more safely? (e.g. be conspicuous, signal early.)
- How could this information help you to be a safer pedestrian or cyclist? (e.g. helps you to recognise that it takes a long time for drivers to stop. Makes you think about leaving more time to cross.)
Preparation

- You will need materials to conduct a forces experiment, including a few dozen eggs and protective materials, such as egg containers, polystyrene foam, bubble wrap, ice-cream sticks and sticky tape.

Build an understanding of road safety initiatives designed to prevent crashes or minimise injury in a crash.

Ask and discuss:

- Given what we already know about the physics of road crashes, what protects people when a crash occurs? For example:
 - Engineers and planners apply the law of physics to reduce the damage in a crash and to build safety features in vehicles (e.g. seatbelts, air bags, crumple zones)
 - Roads are designed to enhance safety and to reduce the likelihood of crashes
 - Roadsides are maintained to reduce harm when a crash occurs
 - Laws are in place to reduce the speed at which people travel.

Discuss:

- Which of these initiatives are most effective in reducing fatalities and injuries?
- How can we know?

Explore the effectiveness of safety equipment.

Divide the students into small groups and explain that they are to design, test and evaluate a landing pad or ‘safety device’ to protect an egg during a collision. Provide materials such as egg containers, polystyrene foam, bubble wrap, ice-cream sticks and sticky tape.

Remind them that the egg could be protected by some form of protective apparatus, or the environment could be adapted to reduce the damage to the egg in the event of a collision.

- What happens when you change the speed at which the egg and the surface collide? (Do this by dropping the egg from different heights.)
- What happens when the egg collides with something heavy?
- What elements of your experiment can be applied to people using the roads?
- Explain how the device compares or contrasts with the way in which an airbag, seatbelt or helmet works.

Each group should report back findings to the rest of the class and publish this work, such as putting it on the web.
Have students become an advocate for road safety by developing a report on local speed zones.
Have the class collaboratively and co-operatively work on the following task and produce a report:

You are on a Local Government Road Safety Task Force. There is some discontent in the local area about the speed zones. Some people think the speeds should be higher and others think they should be lower. Investigate what the existing situation is in relation to different speed zones in the local area. Where and why are speed zones different? What effect could there be on personal and community safety if speeds were increased or decreased?

AT HOME

Preparation
- Make copies of Module 1 - Take Home Activity 1: Speed sensitivity for the class.

Distribute Take Home Activity 1: Speed Sensitivity and set this as a homework task.
Students should work through the exercises on the activity sheet with parents/carers when travelling together.

Back in class, ask the students to share their observations and experiences with the Take Home tasks.
Examine what happens when forces move, stop or change the direction of something which is already moving. In particular, look at what happens to vehicles and passengers when such forces come into operation.

What you need...
- Stiff piece of cardboard, about 50cm long, for a ramp
- Base for ramp (to raise ramp about 10cm)
- Small car
- Block of wood
- Sticky tape
- Ruler
- Small toy person

What to do...
1. Mark off 10cm intervals along the ramp, up to 50cm.
2. Set up the equipment as shown in the diagram and hold the car on the 10cm mark from the base of the ramp.
3. Release the car. What happens? ...
4. What force causes the car to move? ..
5. Release the car from the 20, 30 and 40cm marks in turn.
6. What are 2 differences you notice each time you release the car?
 a. ..
 b. ..
7. What do you think has caused these differences? ..

8. Now tape a block securely about 20cm from the bottom of the ramp.
9. Sit the toy person on the car.
10. Place the car at the 10cm mark and release.
11. Measure the ‘impact distance’ – how far the toy person lands from the car. Write this distance in the table below (in centimetres).

12. Now do the same for the 20, 30, 40 and 50cm marks and record the impact distance each time.

13. Repeat this for each distance 2 more times and fill in the table below. Work out the average impact distance for each height on the ramp.

<table>
<thead>
<tr>
<th>Ramp Distance (cm)</th>
<th>Impact Distance (cm)</th>
<th>Average Impact Distance (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
<td>Run 2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. If this was a real person in a real car, what type of injuries would the person have received?

……
……
……

15. Use your results to plot a graph of impact distance against ramp distance.
16. What do you think happened to the impact speed of the car as it was released from positions higher up the ramp?

……
……
……
……

17. What evidence do you have to support this?

……
……
……
……

18. When the ‘person’ is thrown from the car, what direction does it travel in? Why?

……
……
……
……

19. How is the distance the ‘person’ is thrown related to the car’s impact speed?

……
……
……
……
Perfect timing

Reaction distance
The distance that a vehicle continues to travel while the driver thinks about and processes the information required to stop the vehicle.

Braking distance
The distance that the vehicle continues to travel once the brakes are applied.

Stopping distance
The total distance that a vehicle travels to come to a complete stop from the time the driver first decides to stop, including the reaction distance and the braking distance.

STOPPING DISTANCE = [Diagram showing distances at 40 km/h, 60 km/h, 80 km/h, and 100 km/h]

At 40 km/h
- Reaction distance: 11m
- Braking distance: 9m

At 60 km/h
- Reaction distance: 16m
- Braking distance: 21m

At 80 km/h
- Reaction distance: 38m
- Braking distance: 60m

At 100 km/h
- Reaction distance: 73m
- Braking distance: 88m
Dear Parent/Carer

Your child is learning about road safety and the factors that contribute to road crashes.

Speeding is a common factor in many crashes. It is important for your child to become sensitive to speed and speeding, speed zones and the consequences of going fast.

Please undertake these Speed sensitivity exercises when travelling with your child. Remember to always be a safe role model – don’t speed!

The exercises will help them to be safer when they are travelling independently. They will become more aware of what they and other road users are doing. Whilst these exercises could be done in a car with your child as a front seat passenger, equally they could be undertaken as a bus passenger, cyclist or pedestrian.

1. Co-navigating

- When sharing a journey together, get your child to plan the journey using a Google Maps (www.google.com.au/maps) or other mapping tool, street directory or familiar ‘signposts’ such as special buildings or features.

- Over time, these co-navigation activities will help your child to develop knowledge and awareness about different routes, which will mean they can give more attention to looking for hazards and dangers that appear.
2. Commentary travelling

- Talk about what is happening during the trip. What does the traveller have to do? What are other road users doing? What physical and thinking skills are needed? What decisions need to be made? What dangers/hazards are there? What law applies?
- Over time, the skill of commentating will help build your child’s ability to scan the travel environment and to develop their hazard perception skills.

3. Error spotting

- Encourage your child to spot the errors in your driving, walking or cycling. Get them to look out for errors made by other road users, and discuss what would have been a safer or more responsible action.
- Over time, error spotting builds up an awareness of what other road users may do, and helps your child to learn to take protective and evasive actions.

4. Speed sensitivity

- Have your child (without looking at the speedometer) estimate how fast you are travelling. Talk about what clues they collected to make the guess. Describe the sound and sensation of different speeds. Have them judge the speed of vehicles coming towards you and how many seconds it will take before you pass each other. Talk about a suitable distance to follow another vehicle (a 3-second gap is a safe distance, so watch the vehicle in front and note when they pass an object such as a tree or post. You should not arrive at that object until 3 seconds have passed). Talk about the benefits of leaving plenty of space between you and the vehicle in front.
- Over time, build an understanding that travelling at lower speeds can reduce the risk of being involved in road trauma.
ENRICHMENT ACTIVITIES

- Invite a Victoria Police Youth Resource Officer to discuss the consequences of speeding. Ask if they can demonstrate how speed detection equipment works.

- Students could investigate how vehicle manufacturing companies market and advertise their product. They should generate a list of marketing categories (e.g. speed, economy, safety, performance, style, prestige) and compare and contrast manufacturers. How many manufacturers feature safety as the primary selling point? Which manufacturers promote anti-safety ideas such as speed?

Students should then establish a way to express a viewpoint back to manufacturers or an advertising standards body regarding, for example, speed over safety. They should write to the relevant bodies or media explaining why safety should be a priority.

- Investigate websites that explore and explain the impact of speeding. For example:

- Conduct a class debate on the topic: ‘It is never okay to speed.’
LIST OF KEY ROAD SAFETY TERMS

Casualty – fatality or serious injury resulting from a road crash
Children's crossing – a crossing near a school that is active only when the flags are displayed
Crash – a violent collision causing harm or damage
Distraction – something that reduces concentration and attention
Fatality – a death as a result of a crash
Footpath – a narrow path for a person on foot
Force – the acceleration of a body in the direction of its application
Friction – the force generated between two surfaces when they rub or move over each other
Greenhouse gases - any of the atmospheric gases that contribute to the greenhouse effect
Hazard – something in the traffic or road environment that could cause risk or harm
Intersection – a place where two or more roads meet
Kerb – raised concrete lip at the edge of the roadway
Mid-block – the section of road between two intersections
Pedestrian – a person travelling on foot
Pedestrian crossing – a designated point in the road where there is a means to assist walkers to cross, such as traffic signals or warning signs
Public transport – trains, trams or buses, including school buses
Restraints – seatbelts and similar devices designed to keep people from being thrown around in a vehicle during a crash or when braking suddenly
Road – a public way for road users
Road markings – lines and markings on the road to guide traffic and road users
Road trauma – the serious injury or shock to the body as a result of a collision or crash
Safety door – the left side (kerbside) rear door of a car
Serious injury – an injury that requires a person to be taken to hospital
Shared pathway – a path where people travelling by different modes can travel together, such as pedestrians and cyclists
Speed – the distance travelled divided by the time it takes
Stop, Look, Listen, Think – a systematic procedure designed for pedestrians to use when crossing roads and railway lines
Stopping distance – the total distance that a vehicle travels to come to a stop once the driver realises that the vehicle has to stop
Travel mode – different ways of travelling, e.g. walking, riding, driving, public transport
Traffic signals/signs – a light, sign or other signal used to control or manage traffic or to provide information to road users
Verge – the extreme edge of the road
Vehicle – a device for transporting persons or things, such as a car, train, tram, bus, motorcycle or bicycle.
Zebra crossing – a pedestrian crossing with painted thick white lines on the road, usually with ‘walking legs’ signs and sometimes amber flashing lights.
USEFUL WEBSITES

Road Safety Education Victoria - www.roadsafetyeducation.vic.gov.au

Road Safety Victoria - www.roadsafety.vic.gov.au

Transport Accident Commission (TAC) - www.tac.vic.gov.au

VicRoads - www.vicroads.vic.gov.au

Victoria Police - www.police.vic.gov.au

RACV - www.racv.com.au

Kidsafe - www.kidsafe.com.au

Australian Department of Infrastructure and Regional Development - www.infrastructure.gov.au